ARTIFICIAL INTELLIGENCE IN SKIN CANCER DETECTION: BENEFITS AND CHALLENGES FOR DERMATOLOGICAL PRACTICE

Authors

  • Camila Carolina Valero Guandalini UNEMAT
  • Luanna Sousa Borges Silva Universidade de Vassouras
  • Ana Clara Meneses Ribeiro Universidade de Vassouras
  • Camila Franceschini Universidade de Vassouras
  • Júlia Pireda Felix da Silva Universidade de Vassouras
  • Marcelly Cardoso Prata Universidade de Vassouras
  • Mark Aragão dos Santos Silva Universidade de Vassouras
  • Príncea Vignoli Oliveira Universidade de Vassouras
  • Vitória Eduarda de Souza Moraes Universidade de Vassouras
  • Fátima Lúcia Cartaxo Machado Universidade de Vassouras

DOI:

https://doi.org/10.51891/rease.v10i12.17209

Keywords:

Skin. Cancer. Artificial Intelligence.

Abstract

This article sought to highlight the importance of artificial intelligence (AI) in dermatology, especially for detecting skin cancer. This is a literature review carried out using the PubMed and Scielo databases using the descriptors "artificial intelligence", "cancer", "skin" with the Boolean operator "AND", including articles published between 2019 and 2024, in Portuguese and English, available for free. The articles reported that there were benefits in the classification of skin lesions along with the analysis of the patient's clinical data (age, gender, location, and form of evolution of the lesion). Studies show that the average accuracy of AI algorithms applied to combined imaging modalities was 86%, similar to dermoscopy. With the advancement of AI technology, the effectiveness of skin image diagnosis increases and consequently there is an improvement in the prognosis. However, several challenges must be faced, such as the need for standardization in image acquisition and processing techniques and the creation of representative databases. It is essential to emphasize that automated detection of skin diseases should not replace clinical evaluation by doctors, but rather complement it.

Downloads

Author Biographies

Camila Carolina Valero Guandalini, UNEMAT

Discente, Universidade do Estado de Mato Grosso (UNEMAT).

Luanna Sousa Borges Silva, Universidade de Vassouras

Discente, Universidade de Vassouras.

Ana Clara Meneses Ribeiro, Universidade de Vassouras

Discente, Universidade de Vassouras.

Camila Franceschini, Universidade de Vassouras

Discente, Universidade de Vassouras.

Júlia Pireda Felix da Silva, Universidade de Vassouras

Discente, Universidade de Vassouras.

Marcelly Cardoso Prata, Universidade de Vassouras

Discente, Universidade de Vassouras.

Mark Aragão dos Santos Silva, Universidade de Vassouras

Discente, Universidade de Vassouras.

Príncea Vignoli Oliveira, Universidade de Vassouras

Discente, Universidade de Vassouras.

Vitória Eduarda de Souza Moraes, Universidade de Vassouras

Discente, Universidade de Vassouras.

Fátima Lúcia Cartaxo Machado, Universidade de Vassouras

Docente, Universidade de Vassouras.

Published

2024-12-02

How to Cite

Guandalini, C. C. V., Silva, L. S. B., Ribeiro, A. C. M., Franceschini, C., Silva, J. P. F. da, Prata, M. C., … Machado, F. L. C. (2024). ARTIFICIAL INTELLIGENCE IN SKIN CANCER DETECTION: BENEFITS AND CHALLENGES FOR DERMATOLOGICAL PRACTICE. Revista Ibero-Americana De Humanidades, Ciências E Educação, 10(12), 14–25. https://doi.org/10.51891/rease.v10i12.17209