SALES DATA ANALYSIS USING TIME SERIES, APRIORI ALGORITHM, AND PROPHET

Authors

  • Vanessa Velasco Cazeiro Universidade UniBF
  • André Lucio de Oliveira Universidade Federal do Rio de Janeiro

DOI:

https://doi.org/10.51891/rease.v9i3.9072

Keywords:

Apriori. Prophet. Association rule.

Abstract

This article presents a study on sales data from a computer store, using three tools: (1) application of the Apriori algorithm to identify association rules and consumption patterns; (2) time series analysis to understand how the data behaves over time, at different scales; and (3) application of the Prophet algorithm to decompose the historical sales series and make a prediction. The application of these tools together allowed for a more in-depth analysis of sales, including the detection of consumption behaviors and the identification of temporal patterns over time. The results provide valuable information for the company's strategic decision-making.

Author Biographies

Vanessa Velasco Cazeiro, Universidade UniBF

Bacharel em Engenharia da Computação. Universidade Veiga de Almeida. Pós-graduação em Banco de Dados / MBA em Big Data. Universidade UniBF. 

André Lucio de Oliveira, Universidade Federal do Rio de Janeiro

Mestrado - COPPE/PESC - UFRJ.

Published

2023-04-12

How to Cite

Cazeiro, V. V. ., & Oliveira, A. L. de . (2023). SALES DATA ANALYSIS USING TIME SERIES, APRIORI ALGORITHM, AND PROPHET. Revista Ibero-Americana De Humanidades, Ciências E Educação, 9(3), 2053–2072. https://doi.org/10.51891/rease.v9i3.9072