ARTIFICIAL INTELLIGENCE TO REDUCE FALSE POSITIVES AND FALSE NEGATIVES IN THE DIAGNOSIS OF THYROID CANCER

Authors

  • Beatriz Tomaz Caparroz FUNDEC
  • Livia Helena Paschoaloto Polo FUNDEC
  • Laysa Gabriella Dourado Rugani FUNDEC
  • Maria Clara Coimbra Mancini de Sousa FUNDEC
  • Victória Soares Lacerda FUNDEC
  • Luiz Fernando Travain Ferreira FUNDEC
  • Vitor Arantes Sousa Carvalho FUNDEC
  • Rebeca Zanella Ruiz FUNDEC
  • Caroline Fernanda Vitti Silva FUNDEC
  • Luana Lima Bastos FUNDEC
  • Maíra Rugoni Costa FUNDEC
  • Gabrielly Monteiro da Costa FUNDEC
  • Claudia Pereira Soares Sanchez Lacerda UNIVAR
  • Jordana Lamoso Collete FUNDEC

DOI:

https://doi.org/10.51891/rease.v10i12.17503

Keywords:

Artificial intelligence. False positive. False negative. Thyroid neoplasms.

Abstract

Thyroid cancer is the most common endocrine neoplasia and presents diagnostic challenges related to the high rate of false positives and false negatives, leading to unnecessary interventions or delays in treatment. This work reviews the application of artificial intelligence (AI) in the diagnosis of this disease, addressing methods that optimize the analysis of ultrasound and cytology images. Machine learning algorithms, convolutional neural networks (CNNs) and tools such as AIBx and AI-TIRADS have demonstrated greater accuracy, specificity and the ability to reduce biopsies and invasive procedures. Studies have compared the effectiveness of these systems in relation to traditional methods, such as TIRADS and clinical assessments, highlighting the potential of AI in stratifying risks and identifying benign and malignant nodules with greater accuracy. Models such as MRF-Net have achieved high sensitivity and specificity, while semi-automated systems, such as S-Detect, have improved performance in contexts with less specialized professionals.
Despite the advances, limitations include the need for greater sensitivity in cases that require surgical decisions and the adaptation of models to specific populations. It is concluded that AI is a promising tool in the clinical management of thyroid cancer, but requires additional validations for its safe and effective application on a large scale.

Downloads

Download data is not yet available.

Author Biographies

Beatriz Tomaz Caparroz, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Livia Helena Paschoaloto Polo, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Laysa Gabriella Dourado Rugani, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Maria Clara Coimbra Mancini de Sousa, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Victória Soares Lacerda, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Luiz Fernando Travain Ferreira, FUNDEC

Acadêmico de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC)

Vitor Arantes Sousa Carvalho, FUNDEC

Acadêmico de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Rebeca Zanella Ruiz, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Caroline Fernanda Vitti Silva, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Luana Lima Bastos, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Maíra Rugoni Costa, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Gabrielly Monteiro da Costa, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Claudia Pereira Soares Sanchez Lacerda, UNIVAR

Nutricionista. Centro Universitário do Vale do Araguaia (UNIVAR).

Jordana Lamoso Collete, FUNDEC

Acadêmica de Medicina. Fundação Dracenense de Educação e Cultura (FUNDEC).

Published

2024-12-18

How to Cite

Caparroz, B. T., Polo, L. H. P., Rugani, L. G. D., Sousa, M. C. C. M. de, Lacerda, V. S., Ferreira, L. F. T., … Collete, J. L. (2024). ARTIFICIAL INTELLIGENCE TO REDUCE FALSE POSITIVES AND FALSE NEGATIVES IN THE DIAGNOSIS OF THYROID CANCER. Revista Ibero-Americana De Humanidades, Ciências E Educação, 10(12), 3200–3213. https://doi.org/10.51891/rease.v10i12.17503