
 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

1

doi.org/10.51891/rease.v12i1.23857

STAR: UMA LINGUAGEM ASSEMBLY E MÁQUINA VIRTUAL EXTENSÍVEL DE

16 BITS

João Gabriel Freitas Cavalcante1
Ivan Saraiva Silva2

Maryane Francisca Araujo de Freitas Cavalcante3

RESUMO: O presente artigo tem como objetivo apresentar a linguagem assembly Star e a Star
Virtual Machine, desenvolvidas por João G. F. Cavalcante, como um ecossistema educacional
destinado ao ensino de arquitetura de computadores e programação de baixo nível. Os métodos
adotados envolvem a análise comparativa de arquiteturas clássicas, como MIPS, RISC-V e
6502, a definição de uma ISA compacta de 16 bits e a implementação de um compilador e
máquina virtual em Rust. Técnicas como divisão alto/baixo, extensão de opcode e uso de
pseudo-instruções foram incorporadas para ampliar a expressividade dentro das limitações do
formato. A arquitetura Harvard e o modelo Big-Endian foram escolhidos para facilitar a
visualização da organização interna da memória e das instruções. Como resultados, o projeto
oferece uma linguagem simples, flexível e portátil, associada a um ambiente interativo que
permite executar e depurar programas em tempo real, exibindo registradores, memória e fluxo
de instruções. Conclui-se que o ecossistema Star constitui uma ferramenta eficaz para ensino,
simulação e experimentação prática, contribuindo para a compreensão aprofundada de
princípios fundamentais de arquitetura, compiladores e execução em nível de máquina.

Palavras-chave: Máquinas Virtuais. Linguagem Assembly. Arquitetura de Computadores.
Rust. ISA de 16 Bits.

INTRODUÇÃO

A linguagem Star e Star Virtual Machine constituem um ecossistema didático integrado

destinado ao estudo e à experimentação de conceitos fundamentais de arquitetura de

computadores e programação de baixo nível. A linguagem Star define uma ISA de 16 bits,

simples e acessível, enquanto a Star Virtual Machine fornece o ambiente de execução,

depuração e desenvolvimento responsável por interpretar o código gerado. Essa integração

permite que o estudante explore, em um único ambiente, desde os princípios elementares de

organização de instruções até o funcionamento detalhado de uma máquina virtual.

O desenvolvimento da linguagem Star e de sua máquina virtual decorre da necessidade

de um ambiente educacional que combina simplicidade conceitual e profundidade técnica. A

1Graduando Bacharelado em Ciências da Computação – Universidade Federal do Piauí (UFPI)
2Doutor em Informática – Universidade Federal do Piauí (UFPI).
3Mestranda em Propriedade Intelectual – Instituto Federal do Piauí (IFPI).

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

2

proposta atende especialmente à formação de estudantes e entusiastas que desejam

compreender, de forma prática, elementos como registradores, códigos de operação, extensão de

opcode, modelos de pilha, manipulação de memória e controle de fluxo. Esses elementos foram

planejados previamente e gradualmente incorporados ao núcleo da Star Virtual Machine,

possibilitando uma aprendizagem ativa, interativa e incremental.

A linguagem Star foi projetada para ser acessível, com sintaxe direta e intuitiva,

reduzindo barreiras de entrada para quem inicia no estudo de linguagens de montagem. Essa

simplicidade não compromete a expressividade: ao contrário, orienta o aprendiz a focar

profundamente nos princípios da arquitetura computacional, evitando que aspectos sintáticos

complexos desviem a atenção dos mecanismos fundamentais da execução em baixo nível.

A Star Virtual Machine é implementada em Rust, uma linguagem moderna que oferece

segurança, desempenho e controle preciso do uso de memória. A adoção de Rust não apenas

reforça a robustez do ambiente Star, como também introduz boas práticas de engenharia de

software, essenciais quando se trabalha com estruturas sensíveis como registradores, buffers e

modelos de execução determinística. Assim, Rust contribui diretamente para a confiabilidade e

a estabilidade da máquina virtual.

O presente trabalho tem como objetivo apresentar a linguagem assembly Star,

detalhando sua arquitetura interna, suas instruções e seu processo de construção. Além disso,

discute-se o funcionamento completo da Star Virtual Machine, incluindo o compilador, seus

módulos de análise e geração de código, e a máquina virtual propriamente dita. São tratados

conceitos de construção de linguagens, compiladores e VMs, destacando decisões de projeto,

técnicas de implementação e aspectos de eficiência e segurança.

Outro objetivo deste estudo é demonstrar como uma arquitetura de 16 bits pode ser

implementada de forma prática e funcional. A Star Virtual Machine simula fielmente essa

arquitetura e permite a exportação de código binário em formato textual, possibilitando sua

utilização em ambientes externos, como simuladores de hardware (VHDL ou Verilog). Isso

amplia o potencial educacional da linguagem, tornando-a útil tanto para cursos introdutórios

quanto para disciplinas avançadas de hardware digital e sistemas embarcados.

Por fim, discute-se também os desafios enfrentados durante o desenvolvimento do

ecossistema Star, especialmente no que se refere à escolha da linguagem Rust e ao equilíbrio

entre simplicidade pedagógica e fidelidade técnica. As soluções encontradas demonstram que é

possível criar um ambiente acessível, seguro e eficiente para o ensino de compiladores,

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

3

arquitetura e programação de baixo nível, contribuindo significativamente para a formação de

profissionais mais preparados e conscientes dos fundamentos que sustentam os sistemas

computacionais modernos.

A Linguagem Assembly Star

A linguagem assembly Star é uma linguagem de baixo nível projetada para ser simples,

acessível e fácil de aprender, permitindo que os usuários se concentrem nos conceitos

fundamentais de programação e arquitetura de computadores. Inspirada em linguagens

assembly clássicas, como MIPS, RISC-V e 6502, a linguagem Star apresenta uma sintaxe

simplificada e intuitiva, ideal para iniciantes e entusiastas de computação de baixo nível.

A linguagem é baseada em uma arquitetura de conjunto de instruções de 16 bits, que

inclui um conjunto abrangente de instruções para manipulação de controle de fluxo, operações

aritméticas e lógicas, manipulação de memória e chamadas de sistema. Essa abordagem permite

que os desenvolvedores tenham controle direto sobre os recursos do sistema, possibilitando a

criação de programas eficientes e otimizados.

Figura 1. Exemplo de código em Star Assembly.

.data
string: .stringz "Hello, World!"
.instr
start:
la $g, string
li $a, 0
loop:
llb $a, $g
beqa $a, $zero, end

li $aux1, 7
move $aux2, $a
mcall

inc $g
ja loop
end: nope

Fonte: Elaborada pelos autores (2026).

Perceba que o código acima é um exemplo simples e direto de como a linguagem

assembly Star pode ser usada para imprimir uma string na tela. O programa carrega o endereço

da string "Hello, World!" no registrador $g e, em seguida, entra em um loop onde lê cada byte

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

4

da string, verifica se é o byte nulo (indicando o fim da string) e chama uma rotina de sistema

para imprimir o byte na tela. O loop continua até que todos os bytes da string sejam processados.

Na Interface de Aplicação Binária (ABI) da Star, o registrador $aux1 é utilizado para

indicar o tipo de chamada de sistema, enquanto os registradores $aux2 e $aux3 são usados para

passar argumentos adicionais. Neste exemplo, o valor 7 é carregado em $aux1 para indicar que

a chamada de sistema é uma operação de escrita, e o byte lido da string é passado em $aux2.

Embora exista uma chamada de sistema nativa para imprimir uma string na tela, o objetivo do

exemplo acima é demonstrar como a linguagem assembly Star pode ser utilizada para manipular

strings e realizar operações de entrada/saída de forma direta.

A linguagem assembly Star combina simplicidade, portabilidade e flexibilidade,

tornando-se adequada tanto para iniciantes quanto para quem deseja compreender a lógica

interna de arquiteturas computacionais. Sua sintaxe direta facilita o aprendizado, enquanto a

compatibilidade entre diferentes implementações da Star Virtual Machine garante uma

execução consistente dos programas. Além disso, sua capacidade de operar desde algoritmos

básicos até simulações de hardware complexas, aliada à possibilidade de depuração interativa,

torna o processo de aprendizagem mais dinâmico e eficaz.

A Star se mostra versátil em aplicações práticas, permitindo simular o comportamento

de dispositivos de hardware de forma controlada. Isso é particularmente valioso em cenários

educacionais, onde o estudante pode experimentar conceitos de arquitetura digital e

compreender como instruções, sinais e operações são processados internamente. Essa

capacidade de simulação fornece uma ponte entre o modelo teórico e sua aplicação concreta,

criando um ambiente seguro para explorar ciclos de execução, manipulação de registradores e

fluxo de instruções.

Além das simulações, a linguagem é adequada para o desenvolvimento de jogos e

aplicações interativas, especialmente em contextos nos quais é necessário controlar diretamente

registradores, estados e operações em tempo real. O controle granular oferecido pela linguagem

permite que comportamentos lógicos sejam implementados de forma transparente, reforçando

a compreensão sobre como máquinas reais tratam eventos, cálculos e mudanças de estado. Isso

ajuda o aprendiz a desenvolver uma intuição sólida sobre o funcionamento interno de sistemas

de computação.

A linguagem Star também se destaca no ensino de algoritmos e estruturas de dados. Ao

implementar rotinas como ordenação, busca, pilhas ou filas em assembly, o estudante visualiza

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

5

de modo explícito cada operação e ajuste de memória necessário para executar tais algoritmos.

Esse tipo de prática revela a mecânica interna do processamento, muitas vezes ocultada em

linguagens de alto nível, tornando mais evidente o custo computacional real de cada instrução

e reforçando o entendimento sobre eficiência e organização de dados.

Por fim, o fato de a Star Virtual Machine permitir a execução tanto do código-fonte

quanto de binários amplia as possibilidades de aprendizagem e investigação. Essa dualidade

permite que o usuário compreenda diferentes etapas de transformação do código, desde sua

escrita até a representação binária final. Com isso, esse recurso possibilita observar como

registradores, instruções e pseudo-instruções interagem dentro da máquina virtual, oferecendo

uma visão clara dos principais componentes da linguagem Star e estabelecendo bases sólidas

para estudos mais avançados.

O Planejamento e Registradores da linguagem Assembly Star

O planejamento da linguagem assembly Star envolveu a definição cuidadosa de uma

arquitetura de 16 bits composta por instruções além de registradores e pseudo-instruções que

ampliam sua expressividade. Esse processo foi fundamentado na análise de arquiteturas

consagradas, como MIPS, RISC-V e 6502, escolhidas por sua clareza estrutural e relevância

histórica. A adoção de uma ISA de 16 bits buscou privilegiar simplicidade e acessibilidade,

facilitando a visualização do fluxo de dados e instruções e tornando a linguagem especialmente

adequada ao ensino e à compreensão de fundamentos de arquitetura computacional.

Entretanto, a limitação de espaço inerente às instruções de 16 bits exigiu soluções de

design que maximizam o aproveitamento do formato binário restrito. A limitação de espaço

para representar opcode, registradores e imediatos em apenas 16 bits levou à adoção de técnicas

como divisão das instruções em partes alta e baixa, extensão de opcode e uso de pseudo-

instruções expandidas pelo compilador. Essas soluções ampliaram a expressividade da

linguagem sem perder simplicidade, permitindo criar programas complexos mesmo em uma

arquitetura compacta.

A Star Virtual Machine complementa essa arquitetura ao adotar o formato Big-Endian,

no qual o byte mais significativo é armazenado no menor endereço de memória. Essa decisão

foi motivada tanto por razões pedagógicas quanto pela intenção de alinhar a Star a arquiteturas

históricas amplamente documentadas. O uso de Big-Endian torna mais intuitiva a leitura de

representações numéricas em diferentes bases, especialmente hexadecimal e binária,

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

6

favorecendo a compreensão visual da organização de dados na memória e reforçando o caráter

didático e transparente do ecossistema Star.

A origem dos registradores da Star Virtual Machine foi inspirada em arquiteturas

clássicas de computadores, como MIPS e RISC-V, que utilizam um conjunto de registradores

de uso geral para armazenar dados temporários e resultados de operações. A escolha de um

conjunto de 16 registradores de 16 bits se deve à limitação de espaço da arquitetura de 16 bits,

permitindo que os usuários tenham acesso a um número suficiente de registradores para realizar

operações complexas sem sobrecarregar a memória.

A numeração e nome dos registradores foram projetadas para serem intuitivas e fáceis

de lembrar, facilitando o aprendizado e a utilização da linguagem assembly Star.

Cada registrador tem uma função específica, como armazenar resultados de operações

aritméticas, valores temporários ou endereços de memória, permitindo que os usuários

compreendam rapidamente o propósito de cada registrador.

Registradores de uso geral e ocultos

A Star possui um conjunto de 16 registradores de uso geral, cada um com a capacidade

de armazenar valores de 16 bits. Esses registradores são usados para armazenar dados

temporários e estáticos durante a execução do programa e são acessados diretamente pelas

instruções da linguagem assembly. Os registradores podem ser numerados de 0 a 15, porém cada

um possui um nome associado.

A seguir estão a numeração, nomes e descrição dos registradores de uso geral:

0 - Zero - Este registrador é sempre zero e não pode ser modificado. Ele é usado para

operações que requerem um valor constante de zero.

1 - A - Este registrador é usado para armazenar o resultado de operações aritméticas e

lógicas. Ele é frequentemente usado como o registrador de destino para instruções que

produzem um resultado.

2 - B - Este registrador é usado para armazenar valores temporários durante a execução

do programa. Ele é frequentemente usado como o registrador de origem para instruções que

requerem um valor de entrada.

3 - C - Este registrador é usado para armazenar valores temporários durante a execução

do programa. Assim como o registrador B, ele é frequentemente utilizado como o registrador

de origem para instruções que requerem um valor de entrada.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

7

4 - D - Este registrador é usado para armazenar o resultado de operações aritméticas e

lógicas. Assim como o registrador A, ele é frequentemente utilizado como o registrador de

destino para instruções que produzem um resultado.

5 - E - Este registrador é usado para armazenar valores temporários durante a execução

do programa. Ele é frequentemente utilizado como o registrador de origem para instruções que

requerem um valor de entrada.

6 - F - Este registrador é usado para armazenar o resultado de operações aritméticas e

lógicas. Assim como os registradores A e D, ele é frequentemente utilizado como o registrador

de destino para instruções que produzem um resultado.

7 - G - Este registrador é usado para armazenar valores temporários durante a execução

do programa. Ele é frequentemente utilizado como o registrador de origem para instruções que

requerem um valor de entrada.

8 - Aux1 - Este registrador é usado para armazenar valores utilizados por pseudo-

instruções. Ele também é utilizado como interface primária em instruções de chamadas de

sistema.

9 - Aux2 - Este registrador é usado para armazenar valores utilizados por pseudo-

instruções. Ele também é utilizado como argumento primário em instruções de chamadas de

sistema.

10 - Aux3 - Este registrador é usado para armazenar valores utilizados por pseudo-

instruções. Ele também é utilizado como argumento secundário em instruções de chamadas de

sistema.

11 - Carry - Este registrador é usado para armazenar o valor do carry (ou transporte)

durante operações aritméticas. Ele é utilizado para indicar se ocorreu um carry durante a

execução de uma operação aritmética, como adição ou subtração.

12 - Low - Este registrador é usado para armazenar o resultado baixo de operações

aritméticas que resultam em valores maiores que 16 bits. Ele é utilizado para armazenar a parte

inferior do resultado de uma operação aritmética.

13 - High - Este registrador é usado para armazenar o resultado alto de operações

aritméticas que resultam em valores maiores que 16 bits. Ele é utilizado para armazenar a parte

superior do resultado de uma operação aritmética.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

8

14 - Return Address - Este registrador é utilizado pela máquina virtual para armazenar o

endereço de retorno obtido a partir de instruções de branching ou jumping. Ele é utilizado para

retornar ao ponto correto do programa após a execução de uma sub-rotina.

15 - Stack Pointer - Este registrador é utilizado pela máquina virtual para armazenar o

endereço do topo da pilha. Ele é utilizado para gerenciar a pilha durante a execução do programa,

permitindo que valores sejam empilhados e desempilhados conforme necessário. Ele sempre

começa apontando para o endereço do topo da pilha, que é o endereço mais alto da memória

alocada para a pilha.

Sobre os registradores auxiliares, os registradores Aux1, Aux2 e Aux3 são registradores

de uso geral que podem ser utilizados para armazenar valores temporários durante a execução

do programa. Eles também são frequentemente utilizados em pseudo-instruções e chamadas de

sistema, onde são usados para passar argumentos e armazenar resultados intermediários.

Segue um exemplo de uma pseudo-instrução que utiliza os registradores auxiliares:

Figura 2

addi $a, $a, 1

Fonte: Elaborada pelos autores (2026).

Será traduzida para:

Figura 3

lli $aux1, 0x01
lai $aux1, 0x00
add $a, $a, $aux1

Fonte: Elaborada pelos autores (2026).

A Star Virtual Machine também possui registradores ocultos, que são utilizados

internamente pela máquina virtual para gerenciar o estado da execução do programa. Esses

registradores não são acessíveis diretamente pelo usuário, mas desempenham um papel crucial

na operação da máquina virtual.

Program Counter - Este registrador é utilizado para armazenar o índice, também

podendo ser chamado de endereço fictício da próxima instrução a ser executada. Ele é atualizado

automaticamente pela máquina virtual após cada instrução executada, permitindo que o fluxo

de controle do programa seja mantido. Na implementação da Star, o Program Counter é um

registrador de 16 bits que armazena o índice da próxima instrução a ser executada.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

9

Instruction Pointer Register - Este registrador é utilizado para armazenar o endereço real

da instrução apontada virtualmente pelo Program Counter. Ele é necessário por conta do

modelo de memória de instruções da Star, que divide as instruções em duas partes: alta e baixa.

O endereço da parte alta da instrução apontada pelo Instruction Pointer Register é

sempre obtido pela equação:

InstructionPointerRegister_alta = ProgramCounter × 2

Já a parte baixa da instrução é obtida por:

InstructionPointerRegister_baixa = ProgramCounter × 2 + 1

Em uma implementação de hardware real, o Instruction Pointer Register seria

implementado como um registrador auxiliar de 17 bits.

Instruction Register - Este registrador é utilizado para armazenar a instrução atualmente

sendo executada. Ele é atualizado pela máquina virtual antes da execução de cada instrução,

permitindo que a máquina virtual decodifique e execute a instrução corretamente. Na

implementação da Star, o Instruction Register é um registrador de 16 bits que armazena a

instrução em execução.

INSTRUÇÕES

As instruções da Star foram previamente planejadas para cobrir uma ampla gama de

operações, desde aritmética básica até controle de fluxo e manipulação de memória. A escolha

de instruções foi baseada na limitação de espaço e técnica de extensão de código de operação,

permitindo que a linguagem suporte uma variedade de operações sem exceder o limite de 16 bits

por instrução. A linguagem inclui instruções para operações aritméticas, lógicas, de controle de

fluxo, manipulação de memória e chamadas de sistema, proporcionando uma base sólida para o

desenvolvimento de programas complexos. Além disso, a Star Virtual Machine suporta pseudo-

instruções, que são instruções de alto nível que são traduzidas em uma ou mais instruções de

baixo nível durante o processo de compilação, permitindo que os usuários escrevam código

fonte mais legível e escalável.

Segue abaixo uma lista com uma breve descrição de cada instrução da Star Virtual

Machine:

add - Adição - Soma os valores em dois registradores e armazena o resultado em um terceiro.

sub - Subtração - Subtrai o valor de um registrador de outro e armazena o resultado.

and - Operação Lógica AND - Realiza o AND bit a bit entre dois registradores.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

10

or - Operação Lógica OR - Realiza o OR bit a bit entre dois registradores.

xor - Operação Lógica XOR - Realiza o XOR bit a bit entre dois registradores.

shl - Operação de Deslocamento Lógico à Esquerda - Desloca o valor de um registrador para

a esquerda.

shr - Operação de Deslocamento Lógico à Direita - Desloca o valor de um registrador para

a direita.

lai - Carregar Imediato Alto - Carrega os 8 bits inferiores do valor imediato em um registrador.

lli - Carregar Imediato Baixo - Carrega os 8 bits superiores do valor imediato em um

registrador.

beqr - Salto Condicional Igual Relativo - Salta se dois registradores forem iguais.

bneqr - Salto Condicional Diferente Relativo - Salta se dois registradores forem diferentes.

bgtr - Salto Condicional Maior Que Relativo (com sinal) - Salta se um registrador for

maior que outro (com sinal).

bltr - Salto Condicional Menor Que Relativo (com sinal) - Salta se um registrador for

menor que outro (com sinal).

bgtur - Salta Condicional Maior Que Relativo (sem sinal) - Salta se um registrador for

maior que outro (sem sinal).

bltur - Salto Condicional Menor Que Relativo (sem sinal) - Salta se um registrador for

menor que outro (sem sinal).

mulhl - Multiplicação de Registradores (com sinal) - Multiplica dois registradores (com

sinal); resultado dividido entre low e high.

divhl - Divisão de Registradores (com sinal) - Divide dois registradores (com sinal);

quociente em low, resto em high.

muluhl - Multiplicação de Registradores (sem sinal) - Multiplica dois registradores (sem

sinal); resultado dividido entre low e high.

divuhl - Divisão de Registradores (sem sinal) - Divide dois registradores (sem sinal);

quociente em low, resto em high.

not - Operação Lógica NOT - Realiza o NOT bit a bit em um registrador.

xlb - Extensão de Byte Baixo - Estende o sinal do byte inferior de um registrador para 16 bits.

lab - Carrega o Byte Alto - Carrega o byte alto da memória no endereço de um registrador.

llb - Carrega o Byte Baixo - Carrega o byte baixo da memória no endereço de um registrador.

sab - Armazena o Byte Alto - Armazena o byte alto de um registrador na memória.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

11

slb - Armazena o Byte Baixo - Armazena o byte baixo de um registrador na memória.

j - Salto Incondicional - Salta para o endereço contido em um registrador.

mcall - Chamada de Sistema - Chama uma rotina de sistema definida pelos registradores

auxiliares.

Pseudo-Instruções

As pseudo-instruções da Star Virtual Machine foram projetadas para simplificar o

processo de escrita de código assembly, permitindo que os usuários escrevam instruções de alto

nível que são traduzidas em uma ou mais instruções de baixo nível durante a compilação. Essas

pseudo-instruções são especialmente úteis para operações comuns, como manipulação de

memória, operações aritméticas e lógicas, e controle de fluxo, permitindo que os usuários

escrevam código mais legível e fácil de entender. As pseudo-instruções são uma extensão da

linguagem assembly Star e não são executadas diretamente pela Star Virtual Machine, mas sim

traduzidas em instruções de baixo nível durante o processo de compilação. Isso permite que os

usuários escrevam código mais expressivo e fácil de manter, sem sacrificar a eficiência e o

controle sobre os recursos do sistema.

Abaixo estão algumas das principais pseudo-instruções suportadas pela Star Virtual

Machine:

nope - Não tem nenhum impacto.

move $rd, $rs - Copia o valor de um registrador para outro.

neg $rd, $rs - Nega (complemento de dois) o valor de um registrador.

jr $rs - Salta para o endereço em $rs.

ret - Retorna para o endereço em $ra.

li $rd, imm - Carrega um imediato de 16 bits em um registrador.

la $rd, label - Carrega o endereço de um rótulo em um registrador.

lb $r1, $r5[offset] - Carrega um byte da memória (sign-extend).

sb $r1, $r5[offset] - Armazena o byte menos significativo na memória.

lw $r1, $r5[offset] - Carrega uma word (16 bits) da memória.

sw $r1, $r5[offset] - Armazena uma word (16 bits) na memória.

mul $rd, $rs, $rt - Multiplica dois registradores.

div $rd, $rs, $rt - Divide dois registradores (quociente).

mod $rd, $rs, $rt - Divide dois registradores (resto).

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

12

swap $r1, $r2 - Troca os valores de dois registradores.

addi $rd, $rs, imm - Soma imediato a um registrador.

subi $rd, $rs, imm - Subtrai imediato de um registrador.

andi $rd, $rs, imm - AND entre registrador e imediato.

ori $rd, $rs, imm - OR entre registrador e imediato.

xori $rd, $rs, imm - XOR entre registrador e imediato.

shli $rd, $rs, imm - Desloca à esquerda por imediato.

shri $rd, $rs, imm - Desloca à direita por imediato.

inc $r - Incrementa um registrador.

dec $r - Decrementa um registrador.

muli $rd, $rs, imm - Multiplica por imediato.

divi $rd, $rs, imm - Divide por imediato (quociente).

modi $rd, $rs, imm - Divide por imediato (resto).

beqa $rs, $rt, label - Salta se $rs = $rt (com sinal).

bneqa $rs, $rt, label - Salta se $rs ≠ $rt (com sinal).

bgta $rs, $rt, label - Salta se $rs > $rt (com sinal).

blta $rs, $rt, label - Salta se $rs < $rt (com sinal).

bgtua $rs, $rt, label - Salta se $rs > $rt (sem sinal).

bltua $rs, $rt, label - Salta se $rs < $rt (sem sinal).

j label - Salto incondicional para um rótulo.

Processadores

Os processadores na linguagem Star são mecanismos de pré-processamento que

ampliam a flexibilidade e a modularidade do código fonte. Inspirados em sistemas de pré-

processamento de linguagens como C e Rust, os processadores permitem a inclusão de arquivos,

definição de macros, proteção contra múltiplas inclusões e outras operações que ocorrem antes

da análise sintática do compilador.

Na Star, processadores são identificados por comandos iniciados pelo caractere @, como

@include, @define, @once. Eles são processados pelo scanner, que reconhece essas instruções

especiais e executa as ações correspondentes antes de passar o código para as próximas etapas

do compilador.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

13

O Processador Include

O processador @include permite que o conteúdo de outro arquivo Star seja inserido no

ponto em que o processador é encontrado. Isso facilita a reutilização de código, permitindo que

funções, constantes e definições sejam compartilhadas entre diferentes arquivos. Por exemplo,

ao incluir um arquivo com funções utilitárias, você pode usar essas funções em qualquer parte

do seu código sem precisar reescrevê-las.

O caminho do arquivo incluído é inserido entre aspas após o comando @include, como

em @include "arquivo.star". O scanner irá localizar o arquivo especificado e inserir seu

conteúdo no local apropriado do código fonte.

O Processador Once

O processador @once é utilizado para garantir que o conteúdo do arquivo atual seja

incluído apenas uma vez durante o processo de compilação. Isso evita problemas de múltiplas

inclusões acidentais, que podem levar a erros de redefinição ou conflitos de símbolos. Quando

o scanner encontra um @once, ele verifica se o conteúdo escrito após o processador já foi

incluído anteriormente. Se sim, ele ignora o conteúdo; caso contrário, ele processa o conteúdo

normalmente.

O Processador Define

O processador @define permite a definição de macros, que são substituições de texto

que ocorrem durante o pré-processamento do código. Quando um macro é definido com

@define NOME valor, todas as ocorrências de NOME no código fonte são substituídas pelo

valor especificado. Isso é útil para definir constantes, endereços ou até mesmo sequências de

instruções que podem ser reutilizadas em várias partes do código.

Na linguagem Star, esse processador também suporta o que chamamos de Macros com

Argumentos, onde você pode definir macros com parâmetros. Por exemplo, @define MACRO

(%x) addi $aux1, $aux2, %x define um macro que recebe um argumento %x e o utiliza na

instrução addi. Quando o macro é chamado, o valor passado substitui %x na instrução.

O símbolo % no início da expressão é utilizado para indicar que a expressão como um

todo é um argumento de macro. Isso garante a segurança e a clareza na substituição de macros,

evitando ambiguidades com outros símbolos ou palavras-chave da linguagem.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

14

Extensibilidade e Chamadas de Sistema

A característica de extensibilidade da Star refere-se à sua capacidade de permitir que o

desenvolvedor defina e personalize como a máquina virtual interage com um sistema

hospedeiro. Em vez de ter um conjunto fixo e imutável de operações chamada de sistema, a Star

utiliza um sistema de interfacing que delega a execução de chamadas mcall para uma

implementação fornecida pelo usuário.

A operação mcall é o ponto central da interação com o sistema. Ele funciona como uma ponte:

sempre que o código assembly executado na VM faz uma operação de sistema, o controle é

passado para a função externa definida por uma interface conectada a Star Virtual Machine.

Essa arquitetura torna a Star uma ferramenta poderosa para fins educacionais, pois permite

simular diferentes sistemas apenas mudando a implementação da interface, sem a necessidade

de modificar o compilador ou o núcleo da máquina virtual.

Memória e Modelos de Arquitetura

O núcleo da Star Virtual Machine adota o modelo de arquitetura de Harvard, no qual a

memória é fisicamente separada em dois espaços distintos: um dedicado ao armazenamento de

instruções (código executável) e outro reservado para dados (variáveis, buffers, pilha, etc).

Essa separação estrutural é fundamental para garantir maior segurança, previsibilidade

e eficiência na execução dos programas. O núcleo da Star Virtual Machine organiza sua

memória em segmentos bem definidos:

Memória de Instruções: Armazena o código de máquina Star. É carregada durante a

inicialização do programa e permanece inalterada durante a execução.

Memória de Dados: usada para armazenar variáveis globais, dados estáticos, buffers e a

pilha de execução.

Memória de Posições: Armazena as posições (arquivo, linha e coluna) de definição de

todas as instruções presentes na memória de instruções. Sua existência tem como objetivo

principal aprimorar o processo de depuração, permitindo que, durante a execução ou análise de

um programa, seja possível rastrear exatamente onde cada instrução foi definida no código

fonte. Isso facilita a identificação de erros, a análise do fluxo do programa e a geração de

mensagens de depuração mais precisas.

Cada segmento possui políticas de acesso e proteção específicas, reforçando a robustez e

a previsibilidade do ambiente de execução.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

15

Cabe ressaltar que a memória de posições serve apenas para auxiliar o processo de

depuração. Em uma arquitetura real, sua implementação poderia ser descartada, uma vez que

não é necessária para a execução do programa. No entanto, sua presença na Star Virtual

Machine é fundamental para fornecer informações detalhadas sobre o código fonte durante a

depuração, melhorando a experiência do desenvolvedor.

Formato de Instruções

A Star Virtual Machine utiliza cinco formatos de instruções diferentes, cada um com

uma estrutura específica para acomodar diferentes tipos de operações. Esses formatos são

projetados para aproveitar ao máximo a arquitetura de 16 bits da máquina virtual, permitindo

uma codificação eficiente e compacta das instruções.

Trinity: add $rd, $r1, $r2

Três registradores: destino e duas fontes. Usado para operações aritméticas e lógicas.

Hime: lai $rd, imm8

Um registrador e um valor imediato de 8 bits. Utilizado para carregar imediatos em

registradores.

Pair: mulhl $r1, $r2

Dois registradores. Usado para multiplicação, divisão e manipulação de bytes.

Clover: j $rs

Um único registrador. Utilizado para instruções de salto.

Ark: mcall

Sem operandos explícitos; utiliza registradores auxiliares para chamadas de sistema.

Visualização dos Quartetos de Cada Formato

Figura 3

Formato Quarteto 4 Quarteto 3 Quarteto 2 Quarteto 1 Visualização

Trinity zzzz yyyy xxxx oooo | zzzz | yyyy | xxxx | oooo |

Hime iiii iiii xxxx oooo | iiii-iiii | xxxx | oooo |

Pair yyyy xxxx oooo 1111 | yyyy | xxxx | oooo | 1111 |

Clover xxxx oooo 1111 1111 | xxxx | oooo | 1111 | 1111 |

Ark oooo 1111 1111 1111 | oooo | 1111 | 1111 | 1111 |

Fonte: Elaborada pelos autores (2026).

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

16

oooo - Código de operação (opcode) de 4 bits, que identifica a instrução a ser executada.

xxxx - Registrador, que geralmente é o registrador de destino.

yyyy - Registrador fonte, que é o registrador de origem para a operação.

zzzz - Registrador fonte adicional, usado em instruções que requerem mais de um

registrador fonte.

iiii-iiii - Valor imediato de 8 bits, que é um valor constante usado na instrução.

1111 - Padrão reservado utilizado para indicar a extensão de código de operação.

Extensão de Código de Operação (Opcode Extension)

A extensão de código de operação é uma técnica empregada para ampliar o conjunto de

instruções disponíveis sem alterar o tamanho fixo das instruções da arquitetura. Isso é possível

ao reservar padrões específicos de bits dentro do opcode para indicar instruções especiais ou

formatos diferenciados, permitindo assim a implementação de operações mais complexas e

variadas.

Por exemplo, quando o código de operação de um determinado formato de instrução é

igual a 15 (1111 em binário), isso indica que a instrução utilizará um formato estendido. Nesse

caso, o opcode é seguido por um segundo quarteto que especifica a operação adicional, podendo

também estender o formato para um próximo.

Essa abordagem é o coração da flexibilidade da Star Virtual Machine, permitindo que

novas instruções sejam adicionadas sem a necessidade de redefinir toda a arquitetura. A

extensão de código de operação é uma técnica comum em arquiteturas de conjunto de instruções

compactas, como a Star, e é essencial para maximizar o uso do espaço limitado disponível para

cada instrução.

Embora a extensão de código de operação ofereça flexibilidade e capacidade de expansão,

ela também introduz complexidade no processo de decodificação das instruções. A máquina

virtual precisa ser capaz de identificar quando uma instrução utiliza um formato estendido e,

em seguida, processar os bits adicionais corretamente. Isso pode aumentar o tempo de execução

da decodificação e exigir lógica adicional para lidar com os diferentes formatos de instrução.

Como também há uma troca de espaço por novas instruções. A cada novo quarteto

adicionado, há uma redução no número de bits disponíveis para a definição de registradores e

valores imediatos. Isso pode limitar a complexidade das operações que podem ser realizadas em

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

17

uma única instrução, exigindo que algumas operações mais complexas sejam divididas em

várias instruções.

Durante o planejamento da linguagem assembly Star, foi necessário considerar essas

desvantagens e encontrar um equilíbrio entre a flexibilidade do conjunto de instruções e a

simplicidade da arquitetura. Instruções previamente planejadas foram cuidadosamente

selecionadas para garantir que a linguagem fosse expressiva o suficiente para atender às

necessidades dos usuários, enquanto ainda permanecia dentro dos limites de espaço e

complexidade da arquitetura de 16 bits.

Ao utilizar esses padrões, a Star Virtual Machine consegue expandir significativamente

o número de instruções suportadas, mesmo com o espaço restrito de 16 bits por instrução. Essa

abordagem garante flexibilidade e expressividade à linguagem, sem comprometer a

simplicidade da arquitetura.

Arquitetura do Compilador Star

O compilador da Star Virtual Machine foi projetado para ser modular e eficiente,

traduzindo o código fonte Star Assembly para código de máquina Star. Os principais

componentes são:

Scanner: Lê o código fonte e converte em tokens.

Parser: Analisa os tokens e constrói a AST.

Resolver: Resolve pseudo-instruções e constrói a tabela de símbolos.

Generator: Gera o código de máquina Star e organiza a memória.

Debugger: Auxilia na depuração, notificando erros e permitindo inspeção do estado do

programa.

Binary Scanner: Lê código binário pré-compilado para execução na VM.

A Linguagem de Programação Rust

A escolha da linguagem de programação Rust para a implementação da Star Virtual

Machine foi motivada por diversas características que a tornam especialmente adequada ao

desenvolvimento de sistemas e aplicações de baixo nível, como compiladores e máquinas

virtuais.

Rust é uma linguagem moderna que combina segurança, desempenho e concorrência,

oferecendo recursos avançados de gerenciamento de memória sem a necessidade de coletor de

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

18

lixo. Isso é fundamental para a Star Virtual Machine, que precisa operar de forma eficiente em

um ambiente de 16 bits, onde o controle preciso dos recursos é crucial.

Além disso, Rust possui um sistema de tipos forte e expressivo, que ajuda a evitar erros

comuns de programação, como estouros de buffer e condições de corrida. Esse aspecto é

essencial para garantir a robustez e a segurança da máquina virtual, especialmente ao lidar com

código de máquina e manipulação direta de memória.

O sistema de correspondência de padrões (pattern matching) do Rust facilita a

implementação de lógica complexa, como decodificação de instruções e a execução de operações,

tornando o código mais legível e fácil de manter. A linguagem oferece abstrações poderosas,

como traits e enums, que permitem modelar comportamentos e estados de forma clara e concisa.

No Rust, o pattern matching exige que todos os casos possíveis sejam tratados. Isso

significa que, ao usar match em um enum, por exemplo, o compilador verifica se você cobriu

todas as variantes. Se faltar algum caso, o compilador gera um erro, evitando bugs causados por

casos não tratados.

Isso garante que, ao adicionar novas variantes de um tipo de enum, o desenvolvedor seja

obrigado a atualizar o match, evitando que casos sejam esquecidos e garantindo que o código

esteja sempre completo e correto.

The power of match comes from the expressiveness of the patterns and the fact that the

compiler confirms that all possible cases are handled.

 [Klabnik and Nichols 2018, p. 102]

Um recurso importante que contribuiu para a implementação da Star Virtual Machine

foi o sistema de traits do Rust, que permite definir comportamentos comuns entre diferentes

tipos de dados e módulos. Isso é especialmente útil na Star, pois possibilita que diferentes

componentes da máquina virtual compartilhem funcionalidades, como manipulação de

registradores e memória, sem duplicação de código.

O sistema de traits também torna a Star Virtual Machine extensível, facilitando a adição

de novos recursos e instruções sem a necessidade de reescrever grandes partes do código. Isso é

importante para a evolução da linguagem Star e para a inclusão de novas funcionalidades na

máquina virtual.

Outro ponto positivo é o sistema de gerenciamento de dependências robusto, com o

Cargo, que facilita a inclusão de bibliotecas e ferramentas externas no projeto.

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

19

Além disso, Rust conta com uma comunidade ativa e um ecossistema em constante

crescimento, que oferecem bibliotecas e ferramentas úteis para o desenvolvimento de sistemas.

A linguagem também possui uma curva de aprendizado relativamente suave, facilitando a

adoção por novos desenvolvedores.

Essas características tornam Rust uma escolha ideal para a implementação da Star

Virtual Machine, permitindo que o projeto seja desenvolvido de forma eficiente, segura e com

alto desempenho.

CONCLUSÃO

A linguagem assembly Star e a Star Virtual Machine constituem um ecossistema

educacional integrado, projetado para tornar acessível o estudo de arquitetura de computadores

e programação de baixo nível. Ao priorizar simplicidade e clareza conceitual, o projeto cria uma

relação direta entre código fonte, instruções binárias e comportamento interno de execução.

Essa estrutura permite que aprendizes compreendam, de forma progressiva, os mecanismos

fundamentais que regem sistemas computacionais.

Com isso, a estrutura da Star, demonstra que mesmo arquiteturas compactas podem

atingir flexibilidade e expressividade. A incorporação de extensão de opcode, divisão alto/baixo

e pseudo-instruções amplia significativamente o alcance da linguagem, superando as limitações

inerentes ao formato sem comprometer sua simplicidade. Essa combinação equilibrada de

restrição e capacidade torna o ecossistema adequado ao desenvolvimento gradual de

competências, desde tarefas elementares até construções de lógica mais sofisticadas.

Portanto, a implementação da Star Virtual Machine em Rust contribui para a robustez

do projeto, garantindo segurança na manipulação de memória e reduzindo vulnerabilidades

típicas de ambientes de baixo nível. Com a adoção do modelo Harvard e da abordagem Big-

Endian ele oferece maior previsibilidade e clareza na organização interna do sistema, aspectos

que facilitam a visualização de dados e instruções durante a execução. O debugger integrado

complementa esses recursos, permitindo uma análise minuciosa do estado dos registradores, da

memória e do fluxo de controle.

Além de cumprir sua função pedagógica, o ecossistema demonstra potencial para

aplicações avançadas. Entre elas esta a possibilidade de exportar código binário e integrá-lo a

ambientes como VHDL e Verilog ampliando sua utilidade em contextos de simulação de

hardware e sistemas embarcados. A modularidade do compilador, com etapas bem definidas

 Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE

Revista Ibero-Americana de Humanidades, Ciências e Educação. São Paulo, v. 12, n. 1, jan. 2026.
ISSN: 2675-3375

20

como scanner, parser, resolver e gerador de código, também oferece um terreno fértil para

estudos em compiladores, análise de desempenho e experimentação com novas extensões da

linguagem.

Dessa forma, a linguagem Star e sua máquina virtual consolidam-se como uma

ferramenta completa para o ensino, pesquisa e desenvolvimento em computação de baixo nível.

O projeto contribui para a formação de profissionais mais preparados, capazes de compreender

e construir sistemas eficientes, seguros e inovadores. O futuro da Star Virtual Machine inclui

a expansão do conjunto de instruções, integração com novas ferramentas de análise e depuração,

e o fortalecimento da comunidade de usuários e colaboradores, consolidando seu papel como

referência no ensino de arquitetura de computadores e compiladores.

REFERÊNCIAS

AHO, Alfred V.; LAM, Monica S.; SETHI, Ravi; ULLMAN, Jeffrey D. Compilers: principles,
techniques, and tools. 2. ed. Boston: Addison-Wesley, 2007.

FERNANDES, S. R.; SILVA, I. S. Relato de experiência interdisciplinar usando MIPS. Revista
Internacional de Educação em Arquitetura de Computadores (IJCAE) V.6, N.1, 2017. DOI:
https://doi.org/10.5753/ijcae.2017.4866 .

KLABNIK, Steve; NICHOLS, Carol. The Rust Programming Language. San Francisco: No
Starch Press, 2018. Disponível em: https://doc.rust-lang.org/book/.

MIQUELINI, R. A. A.; FERRARI, H. O. Logisim: ferramenta para simulação de circuitos
combinacionais e sequenciais digitais. Intercursos, Ituiutaba, v. 20, n. 2, 2021. Disponível em:
https://revista.uemg.br/intercursosrevistacientifica/article/view/6319/3799 .

NYSTROM, Robert. Crafting Interpreters. 2021. Disponível em:
https://craftinginterpreters.com/

PATTERSON, David; HENNESSY, John. Computer organization and design: RISC-V
edition. San Francisco: Morgan Kaufmann, 2017.

TANENBAUM, Andrew S.; AUSTIN, Todd. Structured computer organization. 6. ed. Upper
Saddle River: Prentice Hall, 2013.

VOLLMAR, Ken; SANDERSON, Pete. MARS: an education-oriented MIPS assembly
language simulator. In: SIGCSE’06 – Proceedings of the 37th SIGCSE Technical Symposium
on Computer Science Education, Houston, 1–5 Mar. 2006. New York: ACM, 2006.

https://doi.org/10.5753/ijcae.2017.4866
https://doc.rust-lang.org/book/
https://revista.uemg.br/intercursosrevistacientifica/article/view/6319/3799
https://craftinginterpreters.com/

